Program

class Holder:
factors={} #Initialize an empty dictionary
attributes = () #declaration of dictionaries parameters with an arbitrary length
'''
Constructor of class Holder holding two parameters,
self refers to the instance of the class
'''
def init (self,attr): #
self.attributes = attr
for i in attr:
self.factors[i]=[]
def add_values(self,factor,values):
self.factors[factor]=values
class CandidateElimination:
Positive={} #Initialize positive empty dictionary
Negative={} #Initialize negative empty dictionary
def init (self,data,fact):
self.num_factors = len(data[0][0])
self.factors = fact.factors
self.attr = fact.attributes
self.dataset = data
def run_algorithm(self):
'''
Initialize the specific and general boundaries, and loop the dataset against the
algorithm
'''
G = self.initializeG()
S = self.initializeS()
'''
Programmatically populate list in the iterating variable trial_set
'''
count=0
for trial_set in self.dataset:
if self.is_positive(trial_set): #if trial set/example consists of positive examples
G = self.remove_inconsistent_G(G,trial_set[0]) #remove inconsitent data from
the general boundary
S_new = S[:] #initialize the dictionary with no key-value pair
print (S_new)
for s in S:
if not self.consistent(s,trial_set[0]):
S_new.remove(s)
generalization = self.generalize_inconsistent_S(s,trial_set[0])
generalization = self.get_general(generalization,G)
if generalization:
S_new.append(generalization)
S = S_new[:]
S = self.remove_more_general(S)
print(S)
else:#if it is negative
S = self.remove_inconsistent_S(S,trial_set[0]) #remove inconsitent data from
the specific boundary
G_new = G[:] #initialize the dictionary with no key-value pair (dataset can
take any value)
print (G_new)
for g in G:
if self.consistent(g,trial_set[0]):
G_new.remove(g)
specializations = self.specialize_inconsistent_G(g,trial_set[0])
specializationss = self.get_specific(specializations,S)
if specializations != []:
G_new += specializationss
G = G_new[:]
G = self.remove_more_specific(G)
print(G)
print (S)
print (G)
def initializeS(self):
''' Initialize the specific boundary '''
S = tuple(['-' for factor in range(self.num_factors)]) #6 constraints in the vector
return [S]
def initializeG(self):
''' Initialize the general boundary '''
G = tuple(['?' for factor in range(self.num_factors)]) # 6 constraints in the vector
return [G]
def is_positive(self,trial_set):
''' Check if a given training trial_set is positive '''
if trial_set[1] == 'Y':
return True
elif trial_set[1] == 'N':
return False
else:
raise TypeError("invalid target value")
def match_factor(self,value1,value2):
''' Check for the factors values match,
necessary while checking the consistency of
training trial_set with the hypothesis '''
if value1 == '?' or value2 == '?':
return True
elif value1 == value2 :
return True
return False
def consistent(self,hypothesis,instance):
''' Check whether the instance is part of the hypothesis '''
for i,factor in enumerate(hypothesis):
if not self.match_factor(factor,instance[i]):
return False
return True
def remove_inconsistent_G(self,hypotheses,instance):
''' For a positive trial_set, the hypotheses in G
inconsistent with it should be removed '''
G_new = hypotheses[:]
for g in hypotheses:
if not self.consistent(g,instance):
G_new.remove(g)
return G_new
def remove_inconsistent_S(self,hypotheses,instance):
''' For a negative trial_set, the hypotheses in S
inconsistent with it should be removed '''
S_new = hypotheses[:]
for s in hypotheses:
if self.consistent(s,instance):
S_new.remove(s)
return S_new
def remove_more_general(self,hypotheses):
''' After generalizing S for a positive trial_set, the hypothesis in S
general than others in S should be removed '''
S_new = hypotheses[:]
for old in hypotheses:
for new in S_new:
if old!=new and self.more_general(new,old):
S_new.remove[new]
return S_new
def remove_more_specific(self,hypotheses):
''' After specializing G for a negative trial_set, the hypothesis in G
specific than others in G should be removed '''
G_new = hypotheses[:]
for old in hypotheses:
for new in G_new:
if old!=new and self.more_specific(new,old):
G_new.remove[new]
return G_new
def generalize_inconsistent_S(self,hypothesis,instance):
''' When a inconsistent hypothesis for positive trial_set is seen in the specific
boundary S,
it should be generalized to be consistent with the trial_set ... we will get one
hypothesis'''
hypo = list(hypothesis) # convert tuple to list for mutability
for i,factor in enumerate(hypo):
if factor == '-':
hypo[i] = instance[i]
elif not self.match_factor(factor,instance[i]):
hypo[i] = '?'
generalization = tuple(hypo) # convert list back to tuple for immutability
return generalization
def specialize_inconsistent_G(self,hypothesis,instance):
''' When a inconsistent hypothesis for negative trial_set is seen in the general
boundary G
should be specialized to be consistent with the trial_set.. we will get a set of
hypotheses '''
specializations = []
hypo = list(hypothesis) # convert tuple to list for mutability
for i,factor in enumerate(hypo):
if factor == '?':
values = self.factors[self.attr[i]]
for j in values:
if instance[i] != j:
hyp=hypo[:]
hyp[i]=j
hyp=tuple(hyp) # convert list back to tuple for immutability
specializations.append(hyp)
return specializations
def get_general(self,generalization,G):
''' Checks if there is more general hypothesis in G
for a generalization of inconsistent hypothesis in S
in case of positive trial_set and returns valid generalization '''
for g in G:
if self.more_general(g,generalization):
return generalization
return None
def get_specific(self,specializations,S):
''' Checks if there is more specific hypothesis in S
for each of hypothesis in specializations of an
inconsistent hypothesis in G in case of negative trial_set
and return the valid specializations'''
valid_specializations = []
for hypo in specializations:
for s in S:
if self.more_specific(s,hypo) or s==self.initializeS()[0]:
valid_specializations.append(hypo)
return valid_specializations
def exists_general(self,hypothesis,G):
'''Used to check if there exists a more general hypothesis in
general boundary for version space'''
for g in G:
if self.more_general(g,hypothesis):
return True
return False
def exists_specific(self,hypothesis,S):
'''Used to check if there exists a more specific hypothesis in
general boundary for version space'''
for s in S:
if self.more_specific(s,hypothesis):
return True
return False
def more_general(self,hyp1,hyp2):
''' Check whether hyp1 is more general than hyp2 '''
hyp = zip(hyp1,hyp2)
for i,j in hyp:
if i == '?':
continue
elif j == '?':
if i != '?':
return False
elif i != j:
return False
else:
continue
return True
def more_specific(self,hyp1,hyp2):
''' hyp1 more specific than hyp2 is
equivalent to hyp2 being more general than hyp1 '''
return self.more_general(hyp2,hyp1)
dataset=[(('sunny','warm','normal','strong','warm','same'),'Y'),(('sunny','warm','high','stron
g','warm','same'),'Y'),(('rainy','cold','high','strong','warm','change'),'N'),(('sunny','warm','hi
gh','strong','cool','change'),'Y')]
attributes =('Sky','Temp','Humidity','Wind','Water','Forecast')
f = Holder(attributes)
f.add_values('Sky',('sunny','rainy','cloudy')) #sky can be sunny rainy or cloudy
f.add_values('Temp',('cold','warm')) #Temp can be sunny cold or warm
f.add_values('Humidity',('normal','high')) #Humidity can be normal or high
f.add_values('Wind',('weak','strong')) #wind can be weak or strong
f.add_values('Water',('warm','cold')) #water can be warm or cold
f.add_values('Forecast',('same','change')) #Forecast can be same or change
a = CandidateElimination(dataset,f) #pass the dataset to the algorithm class and call the
run algoritm method
a.run_algorithm()

Output
[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')]
[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')]
[('sunny', 'warm', '?', 'strong', 'warm', 'same')]
[('?', '?', '?', '?', '?', '?')]
[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?'), ('?', '?', '?', '?', '?', 'same')]
[('sunny', 'warm', '?', 'strong', 'warm', 'same')]
[('sunny', 'warm', '?', 'strong', '?', '?')]
[('sunny', 'warm', '?', 'strong', '?', '?')]
[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?')]